

4ÈÉÓ ÐÒÏÊÅÃÔ ÈÁÓ ÒÅÃÅÉÖÅÄ ÆÕÎÄÉÎÇ ÆÒÏÍ ÔÈÅ %ÕÒÏÐÅÁÎ 5ÎÉÏÎȭÓ (ÏÒÉÚÏÎ ΤΡΤΡ ÒÅÓÅÁÒÃÈ ÁÎÄ innovation
programme under the Grant Agreement No 101016681.

WORKPACKAGE WP4 PROGRAMME IDENTIFIER
H2020-ICT-

2020-2

DOCUMENT D4.1 GRANT AGREEMENT ID 101016681

REVISION 1.0
START DATE OF THE

PROJECT
01/01/2021

DELIVERY DATE 30/06/2022 DURATION 42 Months

D4.1

5G-ERA Middleware initial

version

Ref. Ares(2022)4801383 - 30/06/2022

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

2 of 90

DISCLAIMER
This document does not represent the opinion of the European Commission, and the European

Commission is not responsible for any use that might be made of its content.

This document may contain material, which is the copyright of certain 5G -ERA consortium parties, and

may not be reproduced or copied without permission. All 5G -ERA consortium parties have agreed to

full publication of this document. The commercial use of any information contained in this document

may require a licence from the proprietor of t hat information.

Neither the 5G -ERA consortium as a whole, nor a certain party of the 5G -ERA consortium warrant that

the information contained in this document is capable of use, nor that use of the information is free

from risk, and does not accept any li ability for loss or damage suffered using this information.

ACKNOWLEDGEMENT
This document is a deliverable of the 5G -ERA project. This project has received funding from the

European Unionõs Horizon 2020 research and innovation programme under grant agreement Nº

101016681.

The opinions expressed in this document reflect only the authorõs view and in no way reflect the

European Commissionõs opinions. The European Commission is not responsible for any use that may

be made of the information it contains.

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

3 of 90

PROJECT ACRONYM 5G-ERA

PROJECT TITLE 5G Enhanced Robotic Autonomy

CALL ID H2020-ICT-2020-2

CALL NAME Information and Communication Technologies

TOPIC ICT-41-2020 5G PPP ð 5G innovations for verticals with third party services

TYPE OF ACTION Research and Innovation Action

COORDINATOR ROBOTNIK AUTOMATION SSL (ROBOTNIK)

PRINCIPAL

CONTRACTORS

BRINGAUTO S.R.O.; CAL-TEK SRL; COGNITECHNA SRO; EBOS TECHNOLOGIES

LIMITED; HAL ROBOTICS LTD; IQUADRAT INFORMATICA SL; NEC

LABORATORIES EUROPE GMBH; ORGANISMOS TILEPIKOINONION TIS

ELLADOS OTE AE; TWI LIMITED; UNIVERSITY OF BEDFORDSHIRE BED; VYSOKE

UCENI TECHNICKE V BRNE; WINGS ICT SOLUTIONS INFORMATION &

COMMUNICATION TECHNOLOGIES IKE WINGS

WORK-PACKAGE WP4

DELIVERABLE TYPE DEMONSTRATION

DISSEMINATION

LEVEL

PUBLIC

DELIVERABLE STATE Initial Version

CONTRACTUAL DATE

OF DELIVERY
30/06/2022

ACTUAL DATE OF

DELIVERY
30/06 /2022

DOCUMENT TITLE 5G-ERA Middleware initial version

AUTHOR(S) Renxi Qiu, Diwali, Adrian Lendinez , Bartosz Bratus, Radu Popescu & Et al.

REVIEWER(S) Zhao Xu & Vittorio Solina

ABSTRACT SEE EXECUTIVE SUMMARY

HISTORY SEE DOCUMENT HISTORY

KEYWORDS SEE ACRONYMS AND ABBREVIATIONS

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

4 of 90

Document History

Version Date Contributor(s) Description

V0.1 10/06/2022 BED Table of Content

V0.2 24/06/2022 BED/NEC Initial Content

V0.4 27/06/2022 BED/NEC/WINGS Main Content Update

V0.9 29/06/2022 BED/IQU Review Complete

V1.0 30/06/2022 BED Format Revision

Table of Contents
List of Figures 6

List of Tables 9

List of Acronyms and Abbreviations 9

Executive Summary 11

1 Introduction 14

1.1 Overall concept and purpose of the document .. 14

1.2 Key challenges ... 15

1.3 5G-ERA solutions and architecture ... 16

1.4 Current version of the 5G -ERA Middleware ... 18

2 5G-ERA Cloud -Native Design 21

2.1 Cloud -native design framework ... 21

2.2 Redis Cluster Synchronisation, and Replication ... 30

2.3 Microservices and states ... 33

2.4 Summary ... 36

3 Middleware Integration 37

3.1 Vertical level lifecycle management with action interface 37

3.2 Vertical level fault management, heartbeat and recovery procedure 40

3.3 Machine learning tools .. 42

3.4 Semantic model creation .. 46

3.5 Integrated demonstration ... 47

4 Middleware Verification 60

4.1 Testing environment preparation .. 60

4.2 Middleware deployment ... 63

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

5 of 90

4.3 Network Integration of the middleware with robots ... 65

4.4 Initial integration with OSM and testbeds ... 68

4.5 Evaluation ... 72

5 Middleware Training and Dissemination 76

5.1 Training materials and workshops ... 76

5.2 GitHub repository and documentation .. 76

6 Conclusion and Future Works 78

References 80

Appendix 1 Middleware testing environment configuration files 81

Appendix 2 API Endpoints for accessing semantic models 83

Appendix 3 Semantic model construction 86

Appendix 4 ROS action message definition 90

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

6 of 90

List of Figures
Figure 1:Layers of Communication ... 16

Figure 2:Middleware system diagram ... 18

Figure 3:Middleware Deployment Example ... 22

Figure 4:Insomn ia GET request example ... 23

Figure 5:Visual Studio Start -up project .. 23

Figure 6:RedisInterface API endpoints .. 24

Figure 7:New entity attributes creation .. 24

Figure 8:Successful node creation .. 25

Figure 9:Swagger endpoint cloud .. 25

Figure 10:Swagger endpoints .. 26

Figure 11:Graph Query in Redis Insight ... 26

Figure 12:New relationship between Edge node and Cloud node ... 27

Figure 13:Relationship can_reach ... 27

Figure 14:New generated action node .. 28

Figure 15:demo_action .. 28

Figure 16:Action GET all method ... 29

Figure 17:Action GET all method execute but ton ... 29

Figure 18:Action GET all method response values ... 30

Figure 19:Redis Cluster Use Case Diagram ... 31

Figure 20:Redis-cluster deployment .. 31

Figure 21:Master Node redis -0 Data example ... 31

Figure 22:Replica Node redis -1 Replication Example .. 32

Figure 23:Replica Node redis -2 Replication Example .. 32

Figure 24:Pod Failure Data Persistence Example ... 32

Figure 25:Single Edge Architecture ... 33

Figure 26:Multiple Edge Architecture .. 34

Figure 27:Deployed Middleware ... 35

Figure 28:Deployed standalone NetApp ... 35

Figure 29:Scaled Middleware Services ... 35

Figure 30:NetApp deployed in a scaled environment .. 36

Figure 31:ROS action workflow (Ref_5) ... 38

Figure 32: ROS Action server state machine (Ref_6) ... 38

Figure 33:Heartbeat example ... 41

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

7 of 90

Figure 34:ML Toolbox arch itecture .. 42

Figure 35:Illustration of cloud -native implementation of the ML tools 43

Figure 36:Example workflow for CNF profiling .. 45

Figure 37: Synthetic test of an ML tool .. 45

Figure 38:Red is Insight Nodes -relationships .. 46

Figure 39:5G -ERA Semantic Model using Redis Graph .. 47

Figure 40: Illustration of the Middleware end -to -end service creation and management ... 47

Figure 41:Kubernetes cluster for the test ... 48

Figure 42:Registration of robot to the middleware .. 49

Figure 43:Colcon tool ... 49

Figure 44:Action server client Interface .. 49

Figure 45:Package Launched ... 49

Figure 46:Status of Middleware running .. 50

Figure 47:Gatew ay check ... 50

Figure 48:Launch Action client ROS node .. 51

Figure 49:Launch of Action Server ROS node .. 51

Figure 50:Action sequence plan ... 52

Figure 51:Pod creation ... 53

Figure 52:Heartbeat from the deployed NetApp .. 53

Figure 53:Node creation .. 54

Figure 54:Task Life cycle Update ... 54

Figure 55:Containers creation ... 55

Figure 56:Containers La unch ... 55

Figure 57:Semantic Planning in the End -to -End Demonstration ... 56

Figure 58:Additional Information of the testing nodes .. 57

Figure 59:Left random placement, Right placed in Cambridge .. 58

Figure 60:Placed in the Edge 1 .. 58

Figure 61: Simulated pod failure .. 58

Figure 62: Automatic pod recreation ... 59

Figure 63:AWS Configure command example .. 61

Figure 64:Deployed Middleware ... 64

Figure 65:DDS server container Launch .. 65

Figure 66:Listener and speaker containers launch .. 66

Figure 67:Testing Environment Topology ... 66

Figure 68: Pods under Deployment ... 67

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

8 of 90

Figure 69:DDS server Pod ... 67

Figure 70:DDS Discovery serve r .. 67

Figure 71:Connected through the DDS .. 67

Figure 72:Virtual Network Function descriptor view from OSM GUI .. 68

Figure 73:Network Service descriptor view from OSM GUI .. 68

Figure 74:Virtual Network Function descriptor view from OSM CLI ... 69

Figure 75:Network Service descriptor view from OSM CLI ... 69

Figure 76:Execution of API tool to modify a VNF descriptor .. 70

Figure 77:Configuration of API tool to create a Network Service .. 70

Figure 78:Successful Network Service instantiation (API response) .. 70

Figure 79:Successful Network Service instantiation (GUI) .. 70

Figure 80:OSM NB API endpoints to manage a VNF package (S wagger) 71

Figure 81:OSM NB API endpoints to manage a NS package (Swagger) 71

Figure 82 5G -ERA Athens slice selection mechanism .. 72

Figure 83: 5G -ERA Use-Case in WP4 ... 73

Figure 84: 5G -ERA Reference NetApp in Operation (Brno Meeting) 74

Figure 85:Middleware Github Repository ... 77

Figure 86:Clone history of the repository ... 77

Figure 87:Visitor counts of the 5G -ERA middleware ... 78

Figure 88:API Specification in GitHub .. 78

Figure 89:cloud_1 creation .. 86

Figure 90: Create task model .. 86

Figure 91: Graph generate .. 87

Figure 92: Robot entity ... 87

Figure 93:Relationships generate .. 88

Figure 94:Relationship generate 'owns' .. 88

Figure 95:Graph planning .. 88

Figure 96: Relationship 'Located at' .. 89

Figure 97:Created semantic graph model ... 89

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

9 of 90

List of Tables
Table 1:Middleware cloud native design ... 11

Table 2:Middleware integration .. 11

Table 3:Middleware verification .. 12

Table 4:Relationships with further deliverables ... 14

Table 5:Relationship of WP4 with WP1, 2 & 3 .. 14

Table 6:Service creation .. 15

Table 7:Key innovations of the 5G -ERA Middleware ... 17

Table 8:Conceptual Design vs Implementation .. 19

Table 9:Github Repository and this report .. 19

Table 10:Cloud -Native Design Features, Solutions, Tests and Results 36

Table 11:Implementation of the testing cluster .. 48

Table 12:Capacility of resource placement .. 57

Table 13:Mi ddleware integration, solutions, tests and results ... 59

Table 14:Testing system Configuration .. 73

Table 15:5G -ERA Brno Integration Meeting June results .. 75

Table 16:Training Materials and workshop links .. 76

Table 1 7:Schedule to further improve the 5G -ERA Middleware in the second period of WP4

 ... 79

Table 18:Endpoints for accessing semantic model s .. 83

Table 19:Definition of ROS Action Goal .. 90

List of Acronyms and Abbreviations
AI Artificial Intelligence

API Application Programming Interface

CQRS Command and Query Responsibility Segregation

CRUD Create Read Update Delete

DDS Data Distributed Service

DevOps Development and Operations

IP Internet Protocol

KPI Key Performance Indicator

ML Machine Learning

MEC Multi -access Edge Computing

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

10 of 90

MW Middleware

NSD Network Service Definition

OCI Open Container Initiative

OSM Open Source MANO

PPDR Public Protection and Disaster Relief

QoE Quality of Experience

QoS Quality of Service

REST Representational State Transfer

ROS Robot Operating system

SLAM Simultaneous Localization and Mapping

UC Use Case

VNF Virtual Network Functions

VNFD Virtual Network Function Definit ion

VPN Virtual Private Network

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

11 of 90

Executive Summary
5G-ERA Middleware is designed to standardise and simplify the process of autonomous

robots accessing 5G infrastructure. As the project implementation of the intent -based

networking and c loud native design, it is a key milestone for 5G -ERA promoting the vertical

services and delivering 5G Enhanced Robot use cases on PPDR, healthcare, semi -

autonomous transport, and manufacturing. This document presents the interim results of Work

Package 4 in terms of design and evaluation of 5G -ERA Middleware. The main content of

the document refers to the description of the Middleware development conducted during

the period up to M18 of the project. The final version of the Middleware will be completed

by M41 of the project.

By decoupling the vertical NetApps from the network testbeds, the Middleware offloads

vertical level life cycle management and vertical level fault management from OSM to

simplify the NetApp development. By using the virtualisation of the network capabilities

through standard Kubernetes Orchestration, 5G -ERA avoids the cumbersome service

creation under a cloud/edge/robot environment. This is essential to the scalability and

reusability of the 5G -ERA. The demonstration focuses on three key elements of the

Middleware development:

1) Middleware c loud naive design

Table 1:Middleware cloud native design

Cloud Native

Design

Features

Solutions Tests / Demonstration Result

Stateless of the

Containerisatio

n / Automation

Scalability of

the

Middleware

microservice

The Middleware

services have been

scaled to simulate the

deployment on

multiple Edges

The Middleware microservices

have been scaled to multiple

replicas and showcased the

correct behaviour while

deploying the standalone

NetApp.

Stateful of the

Containerisatio

n / Automation

 Transparency

of the

Middleware

microservice

Synchronisation and

replication

Redis cluster Redis

replication

All tests are completed

successfully.

Security Identify

management

Gateway

Token for accessing

the Middleware

All tests are completed

successfully.

2) Middleware integration

Table 2:Middleware integration

Middleware

integration

principles

Solutions Tests / Demonstration Result

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

12 of 90

Orchestration

of the NetApps

Vertical

orchestration

End-to -end demo The standalone NetApp has

been successfully deployed

with the simulated requests

from the robot, using the

Action Client and the Action

Server.

Loading

semantic

relationship

into

Middleware

Standard API

for creating

planning

Graphic

Transfer Json input into

planning graph

Successfully tested.

Life cycle

management

ROS action

server and

status

End-to -end demo During the work of the robot,

the Action Server receives the

requests to start the NetApps.

The NetApps is deployed

whe n the robot finishes its

work, the NetApp is

automatically terminated if

no other robots use it.

Fault

management

Heartbeat Heartbeat example When the standalone

NetApp is deployed, it sends

the Heartbeat to the

Middleware regularly.

3) Middleware verification

Table 3:Middleware verification

Middleware

verification

Solutions Tests / Demonstration Result

Reduce the

complexity of

the service

creation

through

simplified

onboarding

process

Simplified

onboarding

process

achieved via

1) automatic

Middleware

deployment

2) introducing

the vertical

level of the

life cycle/fault

management

.

 5G-ERA will

redu ce the

complexity of

1) The Middleware

deploys itself

automatically with the

first service and

deploys the NetApps

on demand.

2) The demonstration

of the vertical level

lifecycle ma nagement

and vertical level fault

management.

Simplified the onboarding

process compared to the

OSM. Fewer API calls are

needed which results in the

faster provision of the

resources.

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

13 of 90

the on -

boarding

process, and

simplify the

NSD, VNFD in

the OSM.

Portability and

scalability of

the

Middleware

Middleware is

created as a

set of stateless

microservices

supported by

Redis

Backend

Middleware has been

scaled to simulate the

Middleware working in

multiple locations.

The Middleware has been

successfully scaled to allow

the increased usage of the

system. Also, the portability is

shown as the Middleware

can be easily deployed in

multiple various locations.

Transparency

and the

repeatability of

the 5G -ERA

approach

towards

multiple

NetApps with

significantly

different

demands

Virtualizing

the testbeds

and network

resources

using cloud

native design.

As shown in

figure 1.1, the

Resource

layer network

on

Kubernetes

decouples

the vertical

NetAPPs from

the network

testbeds . Iit

enhances the

transparency

and the

repeatability

of the 5G -ERA

approach in

different

configurations

.

As an interim report,

two distinguished

NetApps are deployed

by the 5G -ERA

Middleware.

Presented in the D4.3,

two approaches are

introduced to deploy

the NetApps

(standalon e and

distributed variants).

The flexibility of building

NetApps is kept. The

Middleware can deploy both

standalone and the

distributed variants of the

NetApp.

 More NetApps experiments

for PPDR, Healthcare,

Delivery and Manufacturing

will be provided i n the final

version of the Middleware

report.

Overall, the 5G -ERA Middleware has been shaped up and initially validated under a

simulated environment. The current version of the Middleware can be found in the

Middleware repository. It will be further developed and tested in the second period of the

work package 4 to fulfil the project objectives.

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

14 of 90

1 Introduction

1.1 Overall concept and purpose of the

document

5G-ERA is designed to realise the intent -based networking, the cloud -native NetApp design,

and the standardised API for 5G enhanced autonomous robots. This document is the interim

Middleware report dedicated to demonstrating the work performed in WP4 on 5G -ERA

Middleware development. The document serves as a reference point for the current statu s

of the 5G enhanced robot services deployment and a comprehensive reference to the

functional and architectural components of 5G -ERA Middleware to be utilised by NetApp's

developers towards 5G -enhanced autonomous robots.

Together with the deliverable D4. 3 (on 5G -ERA reference NetApp development), the works

of WP4 are linked to the activities of the testbed in WP5, and use case demonstration in WP6,

7 and 8. The relationships are summarised in the table below:

Table 4:Relationships with further deliverables

ID Title Relevance Delivery Date

D5.1 5G-ERA open testing

framework

integration and

testing

The testing framework will be optimised for

the 5G -ERA Middleware which ensures their

real -world impact on autonomous robots.

Furthermore, the cloud -native design and

the ML tools of intent -based networking will

be fine -tuned with the 5G -ERA testbeds.

31 Dec 2022

D6.2 PPDR & healthcare

NetApp verification

report

Demonstrate the simplified onboarding,

accelerated NetApp development and

improved quality of experience for PPDR,

Healthcare, Transport and Manufacturing

verticals.

Demonstration of the impact of 5G on the

enhanced robot autonomy.

31 May 2024

D7.2 Transport NetApp

verification report

D8.2 Manufacturing

NetApp verification

report

Furthermore, the development of the WP4 is based on the completed works in WP1, 2 and 3.

The relationships are summarised below:

Table 5:Relationship of WP4 with WP1, 2 & 3

ID Title Relevance Delivery Date

D1.1 Use case scenarios

definition and

evaluation

specification

D1.1 is the basis of Middleware design and

verification. It defines use case scenarios for

autonomous robots that require resource

offloading. The D4.1 realises the use case in

a simulated environment and is to be further

adapted and verified in D6.2, 7.2 and 8.2.

28th Feb 2021

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

15 of 90

D1.2 5G-ERA

architecture,

protocols, and

performance

indicators

D1.2 is the basis of Middleware external

protocol and testing KPI

31 March

2021

D2.1 ML toolboxes and

semantic models for

intent -based

networking

D2.1 specifies the conceptual design of the

5G-ERA intent -based networking, it is

realised in the D4.1 using a c loud -native

design.

31 Dec 2021

This document targets primarily the 5G -ERA NetApp's developers to build their 5G oriented

cloud -native NetApps for autonomous robots in different vertical sectors. The document will

be used for network operators and testbed providers to quantify their exis ting infrastructure

capabilities and resource provision into a paradigm that is understandable by the robots.

1.2 Key challenges

According to the 5G -ERA Description of Work (DoW), the 5G -ERA Middleware realises the

committed innovations of intent -based n etworking (conceptual design reported in the 5G -

ERA deliverable D2.1, cloud -native development, and standard APIs for testbeds through:

1. Semantic interpretation engine

2. Lifecycle Management engine

3. Performance Management engine

4. Fault Management engine

5. Package Management engine

6. Security manager

Furthermore, it should support the KPIs for service creation (identified in the 5G -ERA

deliverable D1.2) in terms of

Table 6:Service creation

 Phase 1. Onboarding Phase 2. Instantiate,

Configure & Activate

Phase 3.

Modify

Phase 4.

Terminate

Baseline

Application

OSM standardised VNFs

Standard NSDs , VNFDs

and MECAppD on OSM

Pre-defined

information model

OSM standardised

VNFs

Pre-

defined

informat

ion

model

Pre-defined

Service

Chain

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

16 of 90

Expected 5G -

ERA KPI

improvement

Optimised NSD, VNFD,

and MECAppD based on

5G-ERA intent -based

networking

Cloud -Native Network

function which simplifies

the onboarding

processes. 5G -ERA

provides automated

synchronisation and

data consistency

Semantic reasoning

for improved

efficiency in

resources

instantiation

Improved

placement of the

resources utilising

Services on Edge

Significantly

reduced overhead

due to cloud native

network functions

N/A N/A

Given a fixed topology and dedicated application specification, it is not hard to identify a

specific software solution to fulfil the requirements. However, the demands of autonomous

robots vary significantly across vertical applications (please refer to 5G-ERA D1.1 for details).

Provision of generic and reusable Robot Services and standardise API to Edge Services and

Cloud Services can be extremely awkward. It is challenging to find a tangible solution to the

tasks for optimised onboarding, life cycle man agement, and fault management for use

cases with different demands and dynamic topology.

1.3 5G-ERA solutions and architecture

Cloud -native design and intent -based networking have already been identified by the 5G -

ERA project as the source of the project i nnovation. To ensure the scalability and reusability

of 5G -ERA towards different vertical sectors, as well as standardising testing framework under

different testbeds; the Middleware will address the challenges mentioned in the section 1.2

by a vertical le vel virtualisation of the 5G testbeds. This implementation is illustrated in Figure

1 below:

Figure 1:Layers of Communication

Each of the three layers in the figure has different responsibilities. The vertical layer network is

responsible for the management of the ROS applications and their communication with the

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

17 of 90

Robot. The Resource Layer Network is responsible for the Kubernetes network that ROS

applications are running on. The last layer is the Resource Enablement Layer Network which

is responsible for the deployment of the Edge Machine with Cloud Instances used by the

system and the dedicated network slices. The 5G -ERA Middleware is responsible for the

planning and life cycle management of the ROS services running in the Kuberne tes

Environment.

By decoupling the vertical NetAPPs from the network testbeds, we can offload vertical level

life cycle management and vertical level fault management from OSM to the 5G -ERA

Middleware to simplify the service creation and maintenance. Usi ng the virtualisation of the

network capabilities, 5G -ERA avoids the cumbersome service creation under a

cloud/edge/robot environment through standard Kubernetes orchestration. This is essential

to the scalability and reusability of the 5G -ERA. Under the p rinciple, the key innovations of

the 5G -ERA Middleware are summarised in the table below:

Table 7:Key innovations of the 5G -ERA Middleware

Innovations Middleware Implementation

Cloud -Native Design and

Standardised APIs

Decoupling the Vertical Applications and the Network

Resources

Adding a virtualized resource layer using Kubernetes to

standardise the APIs

Virtualizing the resource to be used by Robot, Edge and Cloud

Services to simplify the NetApps development. Under the Cloud

Native design, they will be treated as a pod placement

problem and orchestrated according to the resource planning.

Intent -based Networking Introducing vertical level lifecycle management to simplify the

service creation

Introducing a vertical level of fault management to simplify the

service management

Loading semantic models into the Middleware dynamically to

address both vertical and network requirement

The methodology leads to abstraction for vertical and 3 rd party applications to be

automatically optimised to fulfil the expectation of the service and infrastructure providers.

At the same time, it establishes patterns for QoE optimization with respect to vertical level

orchestration, lifecycle management and f ault management.

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

18 of 90

1.4 Current version of the 5G -ERA Middleware

Figure 2:Middleware system diagram

5G-ERA Middleware is allowing robots from different vertical sectors to use 5G -based digital

skills to enhance their autonomy. The Middleware is the link between vertical applications

managed by ROS and 5G infrastructure managed by OSM. It realises the 5G -ERA intent -

based network using cloud -native design. The Middleware can be instantiated in the core

network either in the Edge Machines or in the cloud. The implementation allows the Robot to

request the instantiation of the cloud -native resources that will support the execution of the

task. The main components of the Middleware are:

 Gateway ð It redirects the traffic ac ross the Middleware system meaning rerouting to

the microservices within the system. It also handles the authentication and

authorisation process.

 Action Planner ð Integrating the semantic knowledge of the vertical into resource

planning. It is part of th e vertical level life cycle management implemented by

Middleware .

 Resource Planner ð is responsible for assigning the placement example, on the cloud,

Edge to the tasks.

 Orchestrator ð It orchestrates the process of the deployment of the resources. It is

responsible for the vertical level lifecycle management of the deployed services

 Redis Interface ðAllows the users to retrieve, insert and update data from/into the

Redis-Server

The links between the original conceptual design and the Middleware compone nts are

summarised in the table below

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

19 of 90

Table 8:Conceptual Design vs Implementation

Conceptual Design Implemented by the Middleware Corresponding

Components

Semantic

interpretation

engine

Graph based task and resource planner

illustrated in table 5.

Task Planner &

Resource Planner

Lifecycle

Management

engine

Vertical level lifecycle management using

ROS action server (Detailed in Section 3.1)

Action Server & Task

Planner

Performance

Mana gement

engine

Courtesy of the Cloud Native Design Load

Balancing and realised by 5G -ERA

Orchestrator (Detailed in Section 2)

Orchestrator

Fault Management

engine

Vertical level fault management API and

corresponding orchestration (Detailed in

Section 3. 2)

Orchestrator

(Stateless) & Task

Planner (Stateful)

Package

Management

engine

Courtesy of the Cloud Native Design

Container Management and realised by 5G -

ERA Orchestrator

(Detailed in Section 2)

Orchestrator

Security manager 5G-ERA Gateway and Identify management

(Covered in the Section 2.1)

Gateway & Identity

The latest version of the 5G -ERA Middleware is available at the GitHub repository under this

Github Link . The Middleware is in active development so the specification and available

functionality will grow. The development environment preparation is described in the official

5G-ERA Middleware Repository . Furthermore, the detailed information is describe d in the

section Middleware Training and Dissemination (Section 5). For the instructions on how to

prepare the environment for the ROS Action -Server development, instructions can be found

here Action -server repository .

The contents of these documents are also released in the 5G -ERA repository as part of

guidance on application development. The link between the deliverable and the repository

is summarised as follows:

Table 9:Github Repository and this report

Type GitHub Repository This Report

Examples and

instruction

A full Middleware preparation and deployment

guide

section 4.2

API specification (Gateway) section 2.1

https://github.com/5G-ERA/middleware
https://github.com/5G-ERA/middleware
https://github.com/5G-ERA/middleware/blob/main/ACTION_SERVER_README.md

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

20 of 90

Usage examples of the Action Server/Client section 2.1, section

3.5 (Further

examples in D4.3)

Usage examples of the creating semantic

relationship in Task Planner and Resource Planer

Appendix 3

Usage examples of the Heartbeat and recovery section 3.2

Demo Demonstration of Middleware deployment,

stateless feature and stateful feature

section 2.3

Demonstration of task and resource planning

based on the semantics

section 3. 5

Middleware Evaluation section 4.6

Report Structure

The document is composed of five sections where the second one includes the core

technical aspects of the cloud -native design and demonstration. It starts with an overview

of the 5G -ERA cloud -native strategy on synchronisation and service management and then

demonstrates the cloud -native DevOps towards the stateful and stateless instances which

are common for NetApps to be developed in the vertical sectors. The third section

demonstrates the integration of the intent -based networking towards NetApp's orchestrat ion.

A complete end -to -end use case will be illustrated in the section for 5G -ERA orchestration.

Furthermore, life cycle management and event management interface dedicated to 5G -

ERA robots will also be demonstrated. The fourth section focuses on the verif ication of the

service creation of 5G -ERA Middleware in terms of reusability and scalability. The Middleware

is designed to accelerate the NetApp development of autonomous robots from PPDR, and

healthcare to manufacturing and transport. It is expected to c over the workload from

different use cases. In the interim report, the reusability and scalability are confirmed by

deploying the NetApps from two different workload settings. Finally, some early training and

dissemination materials are listed in section 5 .

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

21 of 90

2 5G-ERA Cloud -Native Design

2.1 Cloud -native design framework

Cloud -native development is an innovative approach for designing, implementing, and

deploying software applications on the distributed computing platforms to meet the

requirements on efficie ncy, agility, resilience, scalability, and flexibility. In 5G -ERA, we

develop the Middleware according to cloud -native design, which aims to optimise the

resource provision and tackle the problem of cloud virtualisation using containers,

kubernetes, and de vOps. The main characteristics of cloud -native software derive from

different factors such as microservices, containers, backing services and automation. In

detail:

Microservices

The microservice architecture consists of isolated services that can be deplo yed and scaled

independently of each other and are utilising diverse libraries and technology stacks for their

execution. This model aims to solve the deficiencies of big monolithic structures, where the

entire logic of the application is controlled by a s ingle deployable component.

The 5G-ERAMiddleware system is composed of multiple microservices, as depicted from

Figure 2:Middleware system diagram.

Using microservices for the deployment of the Middleware, facilitates loosely coupled

systems that are ligh tweight, resilient, easily manageable and observable.

Containerisation

The containerisation of the Middleware services introduces several benefits, such as:

portability, scalability, efficiency, agility, flexibility, easier management, and improved

securi ty.

As part of the cloud native design, the Middleware components are implemented as

containers orchestrated within the kubernetes cluster.

This enables the Middleware to work well in a distributed and complex environment such as

public, private or hybrid clouds for 5G -enhanced robotic autonomy.

Backing Services

Cloud -native environments rely on numerous distinct supporting technologies, such as

identity services, message brokers, monitoring, and data storage, known as backing services.

The 5G-ERA Middlewa re is using Redis-Cluster as a backing service which handles the

synchronisation and replication of the data.

Automation

While the cloud provides a scalable and flexible infrastructure to run containers on, and

containerisation provides an excellent mechanism to build, run, and maintain modular

applications such as microservice -based applications, the containers still must b e deployed,

managed, and scaled up or down, to meet demand. Furthermore, the networking between

the containers also has to be maintained.

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

22 of 90

This operational effort of deploying, running, and maintaining containers is best performed

by Container Orchestratio n Engines (COE), the Middleware system is using kubernetes as a

COE for the process of automation.

Gateway Microservice

The Middleware system includes diverse services. When a robot has to consume multiple

services, setting up distinct end points for each service and managing them separately can

be challenging. A solution for handling such tasks is placing a gateway in front of the services.

In this way, the robot can communicate with the various services by using a single entry point.

For the Middleware sy stem, Ocelot Gateway was implemented. Ocelot is an open -source

application, which is lightweight, fast, scalable, cross -platform, and most importantly it was

specifically designed for .NET Core Microservices Architecture, which is the main reason for

choos ing this technology.

The Gateway is the entry point into the Middleware system. It is responsible for handling the

incoming requests, by routing the traffic to the desired endpoints, retrieving the information

from the backend endpoints, and relaying it ba ck to the robot.

Gateway and Identity

The Gateway also fulfils the role of an Identity Service, through a REST API implementation.

The user credentials are stored in a safe manner using a hash + salt model, following current

best practices and using crypt ographically strong libraries for .NET. The passwords are SALT -

ed and hashed using the PBKDF2 algorithm with HMACSHA256 hashing. Authentication is

achieved by reconstructing the salted hash from the credentials provided at log -in and

comparing the result w ith the salted hash stored in the system at registration.

Gateway and CQRS

The Command and Query Responsibility Segregation (CQRS) is a methodology that divides

the read and write operations into the database, by using commands for writing data and

using queries for reading the data. CQRS can improve the performance, scalability and

security of the application.

The CQRS architecture pattern can also be employed and configured through the gateway

implementation. This can be achieved by separating the write (POST) commands, from the

reads (GET) commands and inserting the data separating writes from reads into different

data stores into the Redis -server.

Gateway Specification

In order to access the Gateway and interact with the Middleware system, one has to deploy

the Middleware, identify the static IP of the Gateway (as shown in the below image), and

provide the route pointing to the desired endpoints. The requests should be done through

Insomnia, Postman, or any other API platform designed for accessing APIs, taking into

account that the API platform chosen has to support Bearer Token authentication for the API

calls.

Figure 3:Middleware Deployment Example

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

23 of 90

Before being able to access the endpoints of the Middleware, one has to go through the

process of registration and login in order to receive the Bearer Token that will be attached

to the API calls. The end to end demonstration including the registration and login is covered

in section 3.6.

Access the Middleware through the Ga teway

As it can be seen the IP of the Gateway is 10.64.140.43 (highlighted in red in the Figure 4),

and we are accessing the desired endpoint by adding the API route /Data/Action

(highlighted in green in theFigure 4), provide the JWT Token that was generat ed for us at the

login and execute the GET call by clicking the Send button. It can be seen in the right hand

side of the below image the data was successfully retrieved for us.

Figure 4:Insomnia GET request example

Illustration of how API is used to incorporate all the data into the Middleware

The Middleware defines a custom API to incorporate all this data into the Middleware. This

section further explains how this process is conducted for the end user and developer s.

The full API definition is available in the GitHub repository under the following link:

middleware/ProposedInterface.md at main · 5G -ERA/middleware · GitHub

The interface API for accommodating CRUD operations in the sema ntic database is defined

as the Redis Interface.

The purpose of the RedisInterface API is to allow the clients of the application to retrieve,

insert and update data from/into the Redis storage. More precisely, the API is sending the

request from the clien t to the Redis system and sending the Redis system response back to

the client.

The CRUD operations which are implemented are described in the Appendix 2..

Demonstration on how to implement new elements

First step is to create elements of the topological graph of the infrastructure, like edges and

clouds.

To set up the environment please visit this link: https://github.com/5G -ERA/middleware , and

follow the instructions from the Readme.md file. Once you have the environment ready,

please select the RedisInterface project as your start -up project in Visual Studio (as can be

seen in the image below) and run the application.

Figure 5:Visual Studio Start -up project

https://github.com/5G-ERA/middleware/blob/main/docs/Middleware/RedisInterface/ProposedInterface.md
https://github.com/5G-ERA/middleware

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

24 of 90

Once the application is running, your browser will open the Swagger UI (as per the below

image) where you will see the API endpoints which are implemented for the RedisInterface

API shown in below figure.

Figure 6:RedisInterface API endpoints

ƍ Creating a new edge node in the graph.

Select from the Swager the endpoint Edge ð POST /api/v1/Edge, after this, add the JSON

template with the attributes to create the new entity.

Figure 7:New entity attributes creation

The response is http 200 is successful. Follo wing, in Redis Insight tool, querying for all the graphs

will provide us with the newly generated edge node as presented below.

GRAPH.QUERY "RESOURCE_PLANNER" "MATCH (x) RETURN x"

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

25 of 90

Figure 8:Successful node creation

ƍ Creating a ne w cloud node in the graph.

Select from the Swager the endpoint Cloud ð POST /api/v1/Cloud, after this, add the JSON

template with the attributes to create the new entity.

Figure 9:Swagger endpoint c loud

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

26 of 90

Figure 10:Swagger endpoints

Following, in Redis Insight tool, querying for all the graphs again will provide us with the newly

generated cloud node as presented below.

GRAPH.QUERY "RESOURCE_PLANNER" "MATCH (x) RETURN x"

Figure 11:Graph Query in Redis Insight

ƍ Creating a new relationship between Edge node and Cloud node in the graph.

In this example, a relationship of type òcan_reachó presenting connectivity between Edge

and cloud in the direction of the arrow is pro vided.

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

27 of 90

Figure 12:New relationship between Edge node and Cloud node

Following, in Redis Insight tool, querying for all the graphs again will provide us with the newly

generated relationship òcan_reachó between nodes Cloud and edge node as presented

below. Also note the direction is from cloud to edge.

GRAPH.QUERY "RESOURCE_PLANNER" "MATCH (x) RETURN x"

Figure 13:Relationship can_reach

ƍ Creating a new action node in the graph.

Other elements like tasks, actions and images can be imported and represented. How to

create a new action node in the graph is shown in the below figure.

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

28 of 90

Figure 14:New generated action node

Following, in Redis Insight tool, querying for all the graphs again will provide us with the newly

generated action node as presented below.

GRAPH.QUERY "RESOURCE_PLANNER" "MATCH (x) RETURN x"

Figure 15:demo_action

ƍ Query for elements

The RedisInterface API allows querying the system for a particular data model, which is stored

in JSON format, and querying for the relationships between the models, which will be stored

in the GRAPH database.

The query run here as an explanation is: list all available actions registered in the database.

H2020 -101016681 - 5G-ERA

 D4.1 - 5G-ERA MIDDLEWARE INITIAL VERSION

29 of 90

Figure 16:Action GET all method

After clicking on the òTry it outó button, click on the òExecuteó button, as in the image below.

Figure 17:Action GET all method execute button

The image below describes the result of the execution. The first highlighted section from the

image shows the Request URL. The URL contains the hostname of our RedisInterface API (i.e.,

https://localh ost:7091) and the designated endpoint, which is ò/api/v1/Action". The second

highlighted section represents the actual values that were retrieved from the Redis s torage.

https://localhost:7091/

